1、几何符号 ⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △ 2、代数符号 ∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶ 3、运算符号 如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。 4、集合符号 ∪ ∩ ∈ 5、特殊符号 ∑ π(圆周率) 6、推理符号 |a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ← ↑ → ↓ ↖ ↗ ↘ ↙ ∥ ∧ ∨ &; § ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ φ χ ψ ω Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ ∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪ ∫ ∮ ∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮ ≯ ⊕ ⊙ ⊥ ⊿ ⌒ ℃ 指数0123:o123 7、数量符号 如:i,2+i,a,x,自然对数底e,圆周率π。 8、关系符号 如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“⊆ ⊂ ⊇ ⊃”是“包含”符号等。 9、结合符号 如小括号“()”中括号“[]”,大括号“{}”横线“—” 10、性质符号 如正号“+”,负号“-”,绝对值符号“| |”正负号“±” 11、省略符号 如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠), ∵因为,(一个脚站着的,站不住) ∴所以,(两个脚站着的,能站住) 总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。 12、排列组合符号 C-组合数 A-排列数 N-元素的总个数 R-参与选择的元素个数 !-阶乘 ,如5!=5×4×3×2×1=120 C-Combination- 组合 A-Arrangement-排列 13、离散数学符号 ├ 断定符(公式在L中可证) ╞ 满足符(公式在E上有效,公式在E上可满足) ┐ 命题的“非”运算 ∧ 命题的“合取”(“与”)运算 ∨ 命题的“析取”(“或”,“可兼或”)运算 → 命题的“条件”运算 A<=>B 命题A 与B 等价关系 A=>B 命题 A与 B的蕴涵关系 A* 公式A 的对偶公式 wff 合式公式 iff 当且仅当 ↑ 命题的“与非” 运算( “与非门” ) ↓ 命题的“或非”运算( “或非门” ) □ 模态词“必然” ◇ 模态词“可能” φ 空集 ∈ 属于(??不属于) P(A) 集合A的幂集 |A| 集合A的点数 R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合” (或下面加 ≠) 真包含 ∪ 集合的并运算 ∩ 集合的交运算 - (~) 集合的差运算 〡 限制 [X](右下角R) 集合关于关系R的等价类 A/ R 集合A上关于R的商集 [a] 元素a 产生的循环群 I (i大写) 环,理想 Z/(n) 模n的同余类集合 r(R) 关系 R的自反闭包 s(R) 关系 的对称闭包 CP 命题演绎的定理(CP 规则) EG 存在推广规则(存在量词引入规则) ES 存在量词特指规则(存在量词消去规则) UG 全称推广规则(全称量词引入规则) US 全称特指规则(全称量词消去规则) R 关系 r 相容关系 R○S 关系 与关系 的复合 domf 函数 的定义域(前域) ranf 函数 的值域 f:X→Y f是X到Y的函数 GCD(x,y) x,y最大公约数 LCM(x,y) x,y最小公倍数 aH(Ha) H 关于a的左(右)陪集 Ker(f) 同态映射f的核(或称 f同态核) [1,n] 1到n的整数集合 d(u,v) 点u与点v间的距离 d(v) 点v的度数 G=(V,E) 点集为V,边集为E的图 W(G) 图G的连通分支数 k(G) 图G的点连通度 △(G) 图G的最大点度 A(G) 图G的邻接矩阵 P(G) 图G的可达矩阵 M(G) 图G的关联矩阵 C 复数集 N 自然数集(包含0在内) N* 正自然数集 P 素数集 Q 有理数集 R 实数集 Z 整数集 Set 集范畴 Top 拓扑空间范畴 Ab 交换群范畴 Grp 群范畴 Mon 单元半群范畴 Ring 有单位元的(结合)环范畴 Rng 环范畴 CRng 交换环范畴 R-mod 环R的左模范畴 mod-R 环R的右模范畴 Field 域范畴 Poset 偏序集范畴
|